If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+88x-112=0
a = 48; b = 88; c = -112;
Δ = b2-4ac
Δ = 882-4·48·(-112)
Δ = 29248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29248}=\sqrt{64*457}=\sqrt{64}*\sqrt{457}=8\sqrt{457}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-8\sqrt{457}}{2*48}=\frac{-88-8\sqrt{457}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+8\sqrt{457}}{2*48}=\frac{-88+8\sqrt{457}}{96} $
| 200m+100m+57300=61500-200m | | -2(-3+7n)=-120 | | 8(x+)-3(x-4)=6(x-7)+8 | | 14+5x=14x+17 | | x^2=9/121 | | 1y+1=20 | | 4/11+x=9/22 | | 3x-1+2x=14 | | s/10=90 | | 6w–14=18w | | 10x+1.2x=-10 | | -8+b=5 | | 7y+3+3y+5=10 | | x-5/3=2.8 | | 3^x.2+15=33 | | 1/2(n-4)—3=3-(2n+3) | | -36=62(2-8x) | | -7n+19=3(-1+5n) | | C=5/4(k-25) | | 6x=7x+35 | | k/59=10 | | 15+a=65 | | 18=p-(-9) | | -29-31+x=-5 | | 20*3.50+$100=n | | C=5/4(k-25 | | a^2+(13-a)^2=89 | | 2x+15=4x+25 | | 5b-2=46+4 | | 3x-7=(x-3=2) | | -16t=17 | | x/40=8 |